
REAL-TIME COMMUNICATION WITH A RECEIVER
COLLECTIVE, ACTIVITY MANAGER, AND QUEUES

Marc Schanne
Software Engineering

FZI Forschungszentrum Informatik
schanne@fzi.de

ABSTRACT

With the introduction of a direct publish/subscribe event service in networked real-time embedded systems the benefits of
this communication scheme are utilized for a wide range of safety critical applications in automotive, avionics,
telecommunications, and process control.
This short paper discusses the advantages of an asynchronous push event notification mechanism in the software
engineering for object-oriented, efficient, and deterministic real-time applications, and presents an architectural design
pattern for the proposed decentralized publish/subscribe programming model, with a logical event channel as central
component in this pattern.

KEYWORDS

Real-Time, Event Service, Networking, Embedded Systems

1. INTRODUCTION

This short paper presents the ongoing research work for a network model in High-Integrity Java Applica-
tions1 (HIJA) [1]. The analysis of the networking support for Architecturally Neutral, high-integrity Real-
Time Systems (ANRTS) based on the
Real-Time Specification for Java (RTSJ)
results in the need for an additional
asynchronous communication model
besides real-time remote method
invocations (RT-RMI). In addition to
synchronous communication like RT-
CORBA [2] or RT-RMI [3] a direct
publish/subscribe event service offers
several benefits to distributed real-time
systems. The communication is direct
without any intermediate active
component. For a brief discussion of the
assets and the main drawback of this
communication in real-time systems refer
to section 2.

The event channel network [4] utilizes
a simple broadcast oriented socket inter-
face for byte array access to any
underlying network system. The event
channel network design can be illustrated

1 IST-511718, research project in the 6th framework program of the European Commission

 Figure 1: Event channel network application (layer structure)

with reference to the ISO/OSI layer structure (see figure 1).
On top of transport functionality of the underlying network system the event channel network implements

a many-to-many event dissemination. The session layer handles data as byte arrays and provides a simple
object serialization to encode user data and protocol information, while the presentation layer establishes the
concept of events and event channels. Event channels and event types are encoded as integers to support an
easy implementation on arbitrary networks. Further details of the event channel declaration and usage of the
event channel network is discussed in section 3.

For hard real-time use a network system like AFDX2 [5] or TTP3 [6] with predictable timeliness and
bandwidth for bounding the delivery time of events is necessary. Whereas that system configuration is nec-
essary under hard real-time constraints the event channel network is also useful in soft real-time
environments. With a more lax declaration of system parameters even an integration with non real-time
communication components, e.g. off-board control units, is possible. The paper closes with the description
of the dynamic feasibilities (see section 5) to enhance business critical systems with soft real-time warranties
for a better quality of service (QoS).

2. ASSETS AND DRAWBACK

To motivate the use of a publish/subscribe event service this section discusses several benefits for dis-
tributed real-time systems, and opposes problems with predictability in asynchronous communication. For a
introduction of the concepts of publish/subscribe the article [7] provides a comparison and classification of
the many faces of publish/subscribe in established interaction schemes. The adaptation for real-time systems
is well founded:

• Anonymous communications: Publishers do not need to know the addresses of subscribers and
similarly subscribers do not need to know the data publisher ‘s identity;

• Decoupling of publishers and subscribers: Flexibility and simplified code reuse;
• Many-to-many communication: Utilization of broadcast-oriented field busses in the area of embedded

systems;
• Scalability: Easily expandable asynchronous coordination without blocking request-response, scales

well from the most basic to very large systems;
• Simplified programming of communication in automation devices: The information does not need to

be read or pulled, and there is no need to know internal memory maps of databases structure of
unknown devices;

• Efficient use of network bandwidth: No request traffic, use of direct event-driven transfer;
• Robust application design: Support for fail-over and migration;
• Portability across platforms: While the system design is well implemented on top of the RTSJ, the

communication protocol itself and the system architecture is platform and network independent;
• Maps well to real-time needs: Use for streaming signals, status updates, event-driven commands in

real-time applications.
To use these system advantages in software design and development for embedded systems the lack of

synchronization is the obvious drawback in reliable real-time programs. The event channel network has to
manage this with binding asynchronous communication to timeliness in interaction and scheduleability.

3. EVENT CHANNEL

The event channel, depicted in figure 2, is the central concept in the event channel network. This logical
object is used to group events transmitted and received over the underlying network system. The encoding
via an integer is used to provide the topic-based publish/subscribe service. The event channel defines a list of

2 Avionics Full Duplex Switched Ethernet, real-time network protocol standardized as ARINC664
3 Time Triggered Protocol, a class of time-triggered real-time bussystems to meet high safety and fault
tolerance requirements

accepted events and requirements for
the transmitting, receiving, and
handling threads, processing these
events. The parameters contain basic
information like necessary queuing
capacities, computation resources,
adequate priorities, scheduleability
settings, and required communication
bandwidth for each node, which can be
used for statical analysis, and verify-
cation of the real-time capabilities
against the hardware and network con-
figuration.

Network management is distributed.
Each node has its own managing unit,
thereby avoiding a centralized point of
failure. The application has access to
the event channels through sockets to the underlying network. Active objects like receiver, and transmitter
have to satisfy the described requirements and provide an application logic independent use of the event
channel network. Each event channel can be connected to multiple underlying networks, in the joined ap-
plication nodes. The events are directly transferred without any centralized network management com-
ponent. For each network socket one receiver thread is responsible. These threads dispatch received events,
and forward them to an activity manager4 through priority queues. Another transmitter thread coordinates
the access to the underlying networks. To provide a network gateway between different physical segments
an additional active component, a gateway component with socket access to both physical networks, has to
be defined. Figure 2 further shows the association between these components and the data flow between
transmitter and receiver in different physical networks connected through a gateway. This gateway is like the
transmitter or receiver an active object, and scheduleable thread. All these threads run concurrently in the
virtual machine and need a predefined scheduling behavior. For more information see the next section.

The event channel itself is no active object and provides no further functionality for the decentralized
publish/subscribe event service. The communication protocol is directly built on top of the functionality of
the physical network or bus and the light-weight Java implementation integrates the required threads in the
scheduling of the local RTSJ compliant virtual machines5. The event channel network provides a network
independent topic-based publish/subscribe service and all activity is located in the nodes of the distributed
embedded system.

4. SCHEDULING

The event channel definition is used to specify requirements for active objects of an application using the
event channel network. With a pre-emptive priority-based scheduling mechanism the necessary threads
allow concurrent execution and event transfer in real-time. For scheduleability either periodic or sporadic
actions with guaranteed minimum inter-arrival times6 are allowed, and as suggested in [8] for a clear design
and overall predictability a segmentation of the real-time application in initialization and mission phase is
required. The following subsections clarify this logical segmentation and the subsection 4.1 mainly describes
the required scheduling behavior in the mission phase. The restriction to periodic and sporadic threads is
used to predict the resource requirements of the threads in the event channel network and effects on periodic
and sporadic event communication. In the dynamic case of non real-time systems these parameters are used

4 One thread per virtual machine
5 HIJA proposes a high-integrity subset of the RTSJ model
6 Aperiodic actions without this warranty are not allowed in the profiles for hard and soft real-time applica-
tions defined with HIJA

Figure 2: Event Channel in a direct publish/subscribe system
with active objects

to establish a failure model with exception handling in the application layer (see section 5).

4.1 Priorities

To enable the event channel
network for hard real-time, a
fixed priority scheduling (e.g.
deadline monotonic or rate
monotonic analysis [9]) is
necessary. The runtime system
has to implement the priority
ceiling emulation protocol to
avoid deadlocks. The schedule-
able objects accessing the
network sockets are configured
with the highest available
priority to guarantee a blocking-
free communication.

The collective of receivers is forwarding the events to the activity manager through queues, sorted by
priority. The activity manager thread activates adequate waiting threads (activities) to execute registered
handlers.

Requirements of computation resources, availability of queuing capacities, and specification of deadlines
and timeliness allow the schedule verification with a fixed priority scheduling algorithm. This prediction
uses the minimum period7 of the required thread activities to be scheduled. The worst case execution time of
all activities is required to verify. Whether the threads are scheduleable the whole system has to return in an
initial state after the least common multiple of all periods.

To demultiplex and dispatch the incoming events the activity manager thread is used, its priority is
smaller than the priority of the collective and is responsible to manage a pool of activity threads, offering
necessary computation resources for the application event handlers. Figure 3 depicts a small example with a
collective of two receiver threads and illustrates the relationship between the period type, required
computation resources and available queuing capacities. The activity manager is used to receive events from
the first-in-first-out (fifo) priority queue collection, and forward them to a waiting activity thread to handle.

4.2 Initialization Phase

The initialization phase is used for non-time-critical activities like creation and configuration of all
mission real-time threads, memory objects, and event handlers. It is assumed no mode changes in the
application follow. While in hard real-time applications no dynamic negotiation about event channels, event
types, or transfer bandwidth is possible all information have to be predicted and can be statically verified.
The initialization phase makes use of the basic administration protocol of the event channel network. For
each communication path the event channel description has to be distributed among the joined application
nodes, and related handlers have to be registered.

4.3 Mission Phase

In the mission phase the event communication takes place. While the event channel network does not
depend on special asynchronous network capabilities, the receiver collective is designed similar to the reactor
pattern [10]. The proposed design pattern of the event channel network provides equivalent synchronous
event demultiplexer, but extends it with an additional activity manager and asynchronous queue-interaction,
for a better partition of fast reception and efficient handling of asynchronous events.

7 This interval is bound to the periodic and sporadic event receptions of the receiver collective.

 Figure 3: Scheduling example with two receiver threads

This event service design is depicted in figure 4. The receiver collective is implemented as singleton on
each node and is used to organize the infrastructure of receivers for each associated socket, available event
channels, required fifo queues, and registration entry point for local event handlers. Each receiver has access
to this configuration and forwards received events in his action period to the activity manager.

The activity manager controls a pool of activity threads with different priorities and controls periodically
the asynchronous received events in the queues and put them into the input queue of waiting activity threads
for immediate handling.
In hard real-time systems the introduced architectural design pattern guarantees demultiplexing of
asynchronous arriving events from different sources, that are bound to deadlines described in the event
channel configuration. For the use with non-hard real-time systems the mechanism with periodic receivers
and activity manager enables an efficient event dispatching with pooled threads for execution under
dependable priorities.

5. DYNAMICS

With dynamic features for discovery, creation, and advertisement of nodes and event channels the event
channel network is useful in soft real-time applications. These dynamic aspects allows a more general
implementation of the direct publish/subscribe event service with exception handling. For non real-time
dynamic environments even an implementation on top of the UDP/IP protocol is applicable. By defining a
failure model with exceptions for unexpected or sub-optimal behavior an overall system health can be
measured.

The two main models of communication: the receiver monitoring and transmitter monitoring are based
on periodic and sporadic event types. This allows a failure handling in the application layer. The application
must know how frequently events should arrive, and take appropriate actions when they do not. For further
discussion of the possible failure modes and error handling refer to [4], where a soundly analysis for UDP/IP,
Controller Area Network (CAN) and TTP/C8 for soft real-time feasibility can be found.

In hard real-time systems this technique is not suitable and any failure results in a total error of the event

8 An implementation of the Time Triggered Protocol [5]

Figure 4: Overview of the main system components

channel network and the application.

6. CONCLUSION

This short overview identifies the benefits of asynchronous, indirect many-to-many communication in the
area of networked, real-time embedded applications and proposes an easy to implement Java and RTSJ based
design pattern for architecturally neutral, high-integrity real-time systems. The event channel network itself
is not designed to implement network reliability with any protocol over-head, rather it utilizes the full
features of the underlying (real-time) networks or busses.

The use of a synchronous network interface for an asynchronous communication scheme in real-time is
possible and allows an easy to understand topic-based publish/subscribe interaction. The communication is
direct without any central management unit and each node is responsible for its own administration. The
distributed and decentralized architecture avoids any single point of failure and is excellently qualified for
integration of real-time systems within non real-time environments.

REFERENCES

[1] HIJA – High-Integrity Java applications. Project Website. http://www.hija.info
[2] Object Management Group, Inc., 2002. Real-Time CORBA Specification. Version 1.1.
[3] Wellings, A. et al, 2002. A Framework for Integrating the Real-Time Specification for Java and Java's Remote

Method Invocation. In Proceedings of the 5th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, pp 13-22

[4] Schanne, M. and Hunt J., 2004. Remote event service design. Technical Report. FZI Forschungszentrum Informatik,
Karlsruhe, Germany. Deliverable D4.2 describing the HIDOORS event channel network.

[5] Condor Engineering, Inc., 2004. AFDX/ARINC 664 Tutorial (1500-049). Version 1.0.
[6] TTA-Group, 2002. Time-Triggered Protocol TTP/C. High-Level Specification Document. Version 1.0.0.
[7] Eugster, P. Th. et al, 2003. The Many Faces of Publish/Subscribe. In ACM Computing Surveys Journal. Vol. 35,

No. 2, pp 114-131.
[8] Puschner, P. and Wellings A., 2001. A Profile for High-Integrity Real-Time Java Programs. In Proceedings of the

4th IEEE International Symposium on Object-oriented Real-Time distributed Computing (ISORC).
[9] Klein, M. et al, 1999. A Practitioner's handbook for real time analysis : guide to rate monotonic analysis for real-

time systems.
[10] Schmidt, D. 1994. Reactor. An Object Behavioral Pattern for Demultiplexing and Dispatching Handles for

Synchronous Events. In Proceedings of the First Pattern Languages of Programs Conference.

